

Financing Carbon Capture and Storage 为碳捕获与封存融资

Dr. Xi Liang CFA
Lecturer in Energy Policy
University of Exeter

CO₂ Geological Storage and Technology Summer School CAGS 21-25 August 2011, Sanya, Hainan, China

Content

- 1. Key terms in measuring the cost of CCS technologies
- 2. What does an investor care?
- 3. Evaluate a hypothetical CCS investment
- 4. Potential financial sources
- 5. Innovative financing model

The Role of CCS / CCS 对全球碳减排的潜在贡献

IEA Blue Map Scenario / 国际能源总署蓝图情景

Source: IEA, 2010.

来源:国际能源总署,2010

1. Key Terms in measuring the cost of CCS technologies

Measure the Costs of Capture

- Cost of electricity (\$/MWh)
- Electricity cost increase (\$/MWh)
- Cost of CO₂ avoided (\$/tonneCO2)
- Cost of CO₂ captured (\$/tonneCO2)

Usually through a cost cash flow analysis

Key Components in a Cash Flow Analysis

- Capital investment
- Fixed operational and maintenance (O&M)
- Fuel cost

Understand the difference between the cost of captured versus the cost of CO₂ avoided

Measure the Costs of Transportation

 Levelised transportation costs (\$/tCO2 per km)

Consists of

- a. Construction cost (material, labour, booster station)
- b. Operation and maintenance costs (e.g. monitoring, maintenance, energy cost)
- c. Other costs (design, insurance, fees, right-of-

Investment Cost versus Diameter of Pipeline

Transportation Cost versus Diameter of Pipeline

Measure the Costs of Storage and Monitoring

Cost per tonne CO₂ stored (\$/tCO₂)

Consists of

- a. Capital cost
- b. Operational and Maintenance cost
- c. Site characterization
- d. Cost of monitoring

Option Representative Cost Range Representative Cost Range (US\$/tonne C stored) (US\$/tonne CO, stored) Geological - Storage^a 0.5-8.0 2-29 Geological - Monitoring 0.1 - 0.30.4 - 1.1Oceanb Pipeline 6-31 22-114 Ship (Platform or Moving Ship Injection) 12-16 44-59 Mineral Carbonation^e 50-100 180-370

Source: IPCC CCS Special Report: pp346

^a Does not include monitoring costs.

^b Includes offshore transportation costs; range represents 100-500 km distance offshore and 3000 m depth.

^c Unlike geological and ocean storage, mineral carbonation requires significant energy inputs equivalent to approximately 40% of the power plant output.

Example: CCS Cost based on State-of-art Technology in 2005

-	Pulverized Coal Power Plant	Natural Gas Combined Cycle Power Plant	Integrated Coal Gasification Combined Cycle Power Plant
Cost of electricity without CCS (US\$ MWh-1)	43-52	31-50	41-61
Power plant with capture			
Increased Fuel Requirement (%)	24-40	11-22	14-25
CO ₂ captured (kg MWh ⁻¹)	820-970	360-410	670-940
CO ₂ avoided (kg MWh ⁻¹)	620-700	300-320	590-730
% CO ₂ avoided	81-88	83-88	81-91
Power plant with capture and geological storage ⁶			
Cost of electricity (US\$ MWh ⁻¹)	63-99	43-77	55-91
Electricity cost increase (US\$ MWh-1)	19-47	12-29	10-32
% increase	43-91	37-85	21-78
Mitigation cost (US\$/tCO ₂ avoided)	30-71	38-91	14-53
Mitigation cost (US\$/tC avoided)	110-260	140-330	51-200
Power plant with capture and enhanced oil recovery			
Cost of electricity (US\$ MWh ⁻¹)	49-81	37-70	40-75
Electricity cost increase (US\$ MWh-1)	5-29	6-22	(-5)-19
% increase	12-57	19-63	(-10)-46
Mitigation cost (US\$/tCO2 avoided)	9-44	19-68	(-7)-31
Mitigation cost (US\$/tC avoided)	31-160	71-250	(-25)-120

Source: IPCC CCS Special Report, pp347

2. What does an investor care?

Investor concern ...

- Potential investment opportunities
- Expected Return (through a free cash flow analysis)
 - Internal rate of return (IRR)
 - NPV
- Perceived Risk
 - Distribution of IRR in a stochastic model
 - Value at risk (i.e. the worst 1% performance)
 - Stress test (what will be the project economics in the worst scenario)
 - driven by market risk, credit risk, operational risk, liquidity risk, legal and regulatory risk.

Investment opportunity schedule

Remark: Risky project demands a higher return and a lower financial leverage 值得注意:高风险项目,需求更高的回报率和较低的负债比率

Scatter diagram of hurdle rate and equity capital ratio for the extra investment needed for capture facilities (based on average response of the 16 financial experts consulted)

Source: Reiner and Liang, 2009; NZEC WP5.2 Report http://www.nzec.info/en/assets/Reports/CamNZECWP52finalrevisions97-03v28aug09Update.pdf

3. Evaluate a hypothetical CCS investment

Key question: What is the required electricity tariff or the required electricity tariff to trigger a large scale CCS investment?

Cost Study of a 1GW USCPC Power Plant with CCS in China 中国100万千瓦CCS超超临界燃煤发电厂成本分析

Parameter	Data	Note
Plant Type	USCPC	
Base Real Required Return without	12%	(10% applied for base plant)
Financial Leverage (Discount Rate)		
Capacity before retrofit	1000	MW
Net Supply Efficiency (LHV) without	41.80%	42.7% at full load
CCS		
Capacity with 90% capture	799.04	MW
Net Supply Efficiency (LHV) with CCS	34.10%	
Lifetime Degrading factor	1.00%	
Fixed Capital Base Plant	634	M US\$ (\$6m working cap.)
Fixed Capital for Capture	155	M US\$ (\$5m working cap.)
Load factor	80%	
Coal Price	4	US\$/GJ (eqv.
		CNY750/tonne metric coal)
Transport, Storage and Monitoring	15	US\$/tonneCO2e
Cost		

Required Cost of CO₂ Emission for Financing a Hypothetical 1GW USCPC Power Plant with CCS (0.8GW actual output) in China 为一个100万千瓦CCS燃煤发电厂融资所需的碳价格

Note: No premium tariff is assumed.

Required On-grid Tariff for Financing a Hypothetical 1GW USCPC Power Plant with CCS in China 为一个100万千瓦CCS燃煤发电厂融资所需的电价及其构成

Note: Neither carbon price or cost of carbon emissions are assumed.

Fuel costs \$4/GJ Source: Liang and Liu, 2011

4. Financial Sources / 融资渠道

Private Financial Sources

- Energy companies
- Commercial and investment banks
- Venture capital
- Clean Development Mechanism

Public Financial Sources

- National government
- Local/municipal government
- Foreign government
- Development bank
- Multilateral institute

Other Financing Strategies

- Enhanced Oil Recovery
- Special premium electricity tariff scheme
- Investment / operational flexibilities

5. Innovative Financing Mechanism – Capture Option / 开发新的融资方式 – 捕获期权

- a. 利用Capture Option (捕获期权) 分离电厂与捕获装置的投资。
- b. CCS 投资者(捕获装置业主) 向电厂购买蒸汽与电力。
- a. Apply 'Capture Option' concept to separate the investment of power plants and capture units.
- b. CCS investors (owner of capture units) purchase steam and electricity from power plants.

Final Remark

- Finance an integrated CCS project in China would require EITHER an USD 3.6 cent/kWh (or CNY0.23/kWh) feed-in-tariff or a US\$51/tCO2e carbon price support scheme
- Financing early large scale CCS demonstration in developing countries requires a combination of public and private financial sources with flexible strategies (such as CO₂ utilization)