

CAGS Technical Workshop Canberra 18th – 22nd January 2010

Dr John Bradshaw

Chief Executive Officer CO₂ Geological Storage Solutions www.cgss.com.au

REGIONAL SCALE ASSESSMENT – METHODOLOGY DEVELOPED FOR THE QUEENSLAND ATLAS

Queensland CO₂ Storage Atlas

- Stage 1 of QDME Carbon
 Geostorage Initiative: 768 1,296
 Mt storage capacity required for
 major emission nodes
- 36 Queensland basins assessed for geological storage prospectivity
- High-grade basins for more detailed studies & data acquisition to identify storage sites
- Geological assessment excludes existing resources
- Product includes A3 hardcopy atlas and GIS (ArcGIS and MapInfo formats)

CGSS Assessment Process

Aim of CGSS Regional Methodology

- Repeatable
- Rely on "prospectivity" assessment to drive capacity estimate (map "fairways")
 - not algorithms in a spreadsheet (divorced from rocks)
- Based on actual rock characteristics and distributions
 - Not supplanted from elsewhere
 - Avoid wherever possible generic or non site specific probabilistic distribution assumptions
 - e.g. CO₂ density, net/gross, SE
- Produce reliable conservative values
 - That policy groups can plan on with certainty

 e.g. not enormous academic / theoretical numbers – but real / sensible numbers based on "invaded area"

Ranking Methodology

 Reservoir assessed solely for potential to have a reliably sealed effective storage area with good injectivity

 Each reservoir ranked for its seal effectiveness & reservoir effectiveness

 Does not dismiss a reservoir due to lack of data – allows for uncertainty due to lack of data

R	anking Criteria	Ranking Criteria Selection Options				
		Adequate regional conventional seal likely.				
81	Conventional Seal	Plausible that significant regional/subregional seals present.				
Seal Effectiveness		No significant seal.				
ive	Unconventional	Adequate regional unconventional seal likely.				
ect		Plausible that unconventional seal is extensive.				
置	Seal	No significant unconventional seal present.				
eal	Faults through	No faults mappable or not pervasive.				
7/	Seal	Plausible that no significant faults present.				
	Seal	Multiple faults and/or displacement ≥ seal thickness.				
Ωı		Regionally well defined with ≥10 % porosity.				
nes	Porosity	Plausible that effective storage pore space present.				
ive		Reservoir facies ineffective <10 % porosity.				
ect		Permeability known to be good to adequate.				
Eff	Permeability	Plausible that permeability or injectivity adequate.				
oir		Permeability known to be poor or absent.				
erv	Depth at Base of	~800 m below hydrostatic head.				
Reservoir Effectiveness	Seal Adequate	~650-800 m below hydrostatic head.				
	Seal Auequate	~650 m below hydrostatic head.				

Ranking	Score		
Acceptable	3		
Uncertain	2		
Below Minimum	1		

Conventional vs Unconventional seals

- 'Conventional' seals act as a physical barrier (trap) to the migration of fluids (e.g. Jericho Formation).
- •Unconventional seals potentially include greensands, siltstones and very fine-grained sandstones. The main feature is very low but effective bulk rock permeability. To be considered as an unconventional seal the formation has be > 100 m thick over an area of ~2000 km² (e.g. Rewan Formation Galilee Basin)

			Reservoir Summary Information						Seal Ranking		Reservoir Ranking					
	Unit		Location	Maximum Thickness (m)	Porosity %	Permeability (mD)	Regional/Sub Regional Seal(s)	Potential Trap Mechanisms	Pootnotes	Seal Type	Bulk Seal Effectiveness	Faults through Seal	Porosity	Permeability	Depth at Base Seal Adequate	Total Score
ı	Rewan Formation				Thinly interbe	dded fluvial s	iltstones, mudsto	nes and sands	ton	ies (>1	L00 m	thick)				
n	Betts Creek beds	K	uthern burra rough	220 (Gross)	Median 17; Max 28 (n = 82)	Median 29; Max 5,852 (n = 60)	Rewan Formation	Structural/ residual gas saturation	1 2 4	U	2	2	3	3	3	13
	Aramac Coal Measures	Ł	uthern burra rough	265 (Gross)	Median 18; Max 23 (n = 23)	Median 1.6; Max 429 (n = 22)	Rewan Formation	Structural/ residual gas saturation	1 4	U	2	2	3	1	3	Fail
	Jochmus Formation		burra rough	755 (Gross)	Median 18; Max 30 n = 83	Median 13; Max 1,634; n = 58	Rewan Formation	Stratigraphic/ residual gas saturation	1	U	2	2	3	2	3	12
	Jericho Formation Several thick intraformational fluvial and lacustrine siltstone and mudstone intervals (>50 m thick)															
t	Jericho Formation		oburra rough	804 (Gross)	Median 15; Max 26 n = 73	Median 6.4; Max 279; n = 58	Intraformational	Stratigraphic/ residual gas saturation	5	С	3	2	2	2	3	12
in	Lake Galilee Sandstone		oburra rough	287 (Gross)	Median 7; Max 11; n = 15	Median 0.3; Max 1; n = 6	Jericho Formation	Stratigraphic/ residual gas saturation	1	С	3	2	1	1	3	Fail

Ranking Methodology

- •A reservoir that does not have a 'conventional' seal immediately overlying it is set to 'unconventional' and ranked as a 2 (e.g. Kelly Creek Fm).
- •The Depth at Base of Seal Adequate is not set as an automatic fail (e.g. Carlo Sandstone)
- •Failure occurs if:
 - there is neither 'conventional' nor 'unconventional' seal above the reservoir (e.g. Ethabuka Sandstone);
 - if either the porosity or the permeability of the reservoir is below its respective minimum cut-off (e.g. Georgina Limestone)

Potential Storage Area Mapping

- Maps generated for the maximum known extent of reservoir-seals intervals within a basin that are evaluated as having potential for geological storage of CO₂
- The maximum potential storage area incorporates
 - A regional seal >800 m deep at its base
 - A seal of suitable thickness to contain CO₂ (>50 m for conventional seal; >100 m for unconventional seal),
 - □ A suitable quality reservoir for CO_2 (porosity $\geq 10 \%$; permeability $\geq 5 \text{ mD}$).
 - Note: permeability should probably be much higher; depends on clients requirements
- However, the level of detail in mapping maximum potential storage area varies from basin to basin depending on the data availability and geological complexity.

Storage Area "Fairway"

- 1. Define storage area ("Fairway")
- Extent of regional seal (Snake Creek Mudstone/Moolayember Fm) and reservoir fairways used to define probable storage area in Southern Bowen Basin over the Roma Shelf/Wunger Ridge.
- Fairways difficult to map in detail due to association with thin and narrow fluvial channel sandstones, lack of 3-D seismic data, and limited palaeo-geographic maps
- Showgrounds Sandstone most widespread reservoir – contains good quality sandstones to depths of 2,300 m in high energy fluvial channels
- Reservoir quality generally deteriorates towards eastern flank, but difficult to map where reservoirs end in Taroom Trough

Sth Bowen Basin fairway map

Temperature & Pressure

2. Calculate temperature and pressure gradients from WCR's

- Temperature gradient ~35°C through southern Bowen Basin
- Pressure gradient ~1.4374 psi/m

CO₂ Density

- Under the normal range of pressure/ temperature conditions found in sedimentary basins, the density of CO₂ can vary significantly
- Uses the industry standard method of calculating CO₂ density using pressure & temperature data (Span and Wagner 1996).
- The precision of the CO₂ density estimate depends on the accuracy of pressure and temperature estimates.
- Data obtained from CSIRO
 Pressureplot database, then cross-checked with well data (ideally 10–20 data points).

CO₂ density given two end-member basin conditions: a hot fresh-water (red curve) and a cold saline-water basin (blue curve).

CO₂ Density

3. Calculate CO₂ density gradient

- Supercritical below 500 m SS (800 mGL)
- Little increase in density below 1,300 mSS (1,600 mGL)

Volumetric Equation

The equation for volumetric estimation is:

$$MCO_2 = RV * \emptyset * Sg * \delta_{(CO2)}$$

- $MCO_2 = mass of CO_2 stored in kilograms$
- RV = total reservoir rock volume in m³
- \emptyset = total effective pore space (as a fraction)
- Sg = the gas saturation within the above pore space as a fraction of the total pore space (10 %)
- $\delta_{(CO2)}$ = the density of CO_2 at the given reservoir depth (pressure and temperature) in kg/m³.

Area & Reservoir

- 4. Calculate Areas & Reservoir Parameters:
- Area calculated for each depth range over mapped storage area
- Average net pay zone thickness obtained from gas fields over reservoir area
- Average porosity obtained from QPED database
- Drainage cells defined but not used in calculations (beyond regional scope of Atlas)
- Alternatively, can use isopach maps and regional porosity trends if known (e.g. Eromanga Basin)

Storage Capacity estimates

Matched capacity:

Detailed matching of sources and sinks including supply and reservoir performance assessment

Practical (Viable) capacity:

Applies economic and regulatory barriers to realistic capacity.

Effective (Realistic) capacity:

Applies technical cut off limits, technically viable estimate, more pragmatic, actual site / basin data

Theoretical capacity:

includes large volumes of "uneconomic" opportunities. **Approaches physical limit**

of pore rock volume; unrealistic

and impractical estimate

Increasing constraints of technical, legal, regulatory and commercial certainty

increasing constraints

Galilee Basin - 3,183 Mt

Trapping Mechanisms

- There are different mechanisms which immobilise (trap) CO₂ in the subsurface, and the timescales over which they operate (Bachu et al. 2007).
- The lower three mechanisms (dissolution, mineralisation and adsorption) are, mostly, very long-term and are not considered here further.
- The volumetric estimations calculated in this atlas are based around free-phase trapping

Time dependency of processes involved in CO2 geological storage (modified after Bachu et al. 2007). Top four green processes are relevant to the atlas.

MAS – Migration Assisted Storage

Schematic of trail of residual CO₂ that is left behind because of snap-off as the plume migrates upwards during post-injection period (modified from Juanes et al. 2006)

The dominant primary trapping mechanism in MAS is discontinuous free-phase trapping as *residual gas saturation (RGS)* in the trail of a migration plume.

Using the porosity cut-offs a residual gas saturation (Sgr) of 0.2-0.6 is likely but this is difficult to calculate without core. Therefore a likely conservative value of Sgr = 0.1 has been used for all volumetric calculations.

Ultimately the CO₂ trapped by these mechanisms is dissolved into the surrounding formation water

Invaded Volume efficiency factor

- Simple volumetric
 estimation calculations
 overestimates capacity:
 calculating the volume of
 CO₂ that could be stored
 over the *entire* reservoir
 unit.
- As the migrating plume will not access a large proportion of the reservoir this value is unrealistic (assuming homogenous reservoir, injection over entire interval, & entire formation water displaced uniformly)
- Therefore to limit extreme values developed a very basic Invaded Volume efficiency factor 15m

As the reservoir thickness increases, a smaller proportion of the total reservoir volume can be theoretically considered as potentially available for storage.

Showgrounds Sandstone example

Basin:	Southern Bowen	Ranked Reservoir Unit:	Showgrounds Sandstone	Storage Mechanism:	Residual Gas Saturation					
L	stimated theoretical carbor	dioxide storage resource of	the Southern Bowen Basin - Showgrounds Sandstone reservoir is 191 Megatonnes							
	Regional Storage Volume Esti	imation - Data Quality	Comment							
	Structural Surface Constraints:	Good	Regional GA/GSQ interpretation - considered likely to be accurate ± 100 m.							
1	Reservoir Thickness Constraints:	Fair	Braided fluvial channels - generally	y trending east west - inte	rsected randomly by wells.					
	Reservoir Porosity Constraints:	Good	Measured porosities from QPED da	tabase.						
	Reservoir Sg, Constraints:	Fair	Average value of 10% of total pore volume used across entire porosity range.							
	Regional Carbon Dioxide Density	Estimation - Data Quality	Comment							
-	Temperature Profile Constraints:	Probable Temperature Profile	Data from CSIRO - selectively edited and final regional temperature profile estimated by GGSS.							
Pressure Profile Constraints: Probable Pressure Regime			Data from CSIRO - selectively edited and final regional pressure profile estimated by GGSS.							
	Theoretical Storag	e Resource		Comment						
Storage Volume Estimation Method: Statistical			Net pay zone thicknesses from limited field log analysis. Storage efficiency factor is 1.							
	Subjective Estimate Accuracy:	Average								
			19							
Estim	ated Potential Storage:	191	Megatonnes (theoretical stora		NB: Residual Gas Saturation storage has been approximated using unit specific storage cut-offs (See Volumetric Methodology Section for discussion).					

Statistical Summary Data	Nett Thickness (m)	Porosity %			
Data Point Count	21	1634			
Average	5.12	12.40			
Median	4.60	12.90			
Standard Deviation	3.01	4.90			
Kurtosis	0.44	0.20			
Skewness	0.81	-0.20			

5. Calculate Theoretical CO₂ Storage Capacity

- Sum of storage volume in each depth range (accounts for changes in CO_2 density with depth)
- Residual Gas saturation= 10%
- RGS efficiency factor determined based on reservoir thickness (high for thin reservoirs, low for thick reservoirs)
- Residual gas saturation storage mechanism volume calculated as 1% of total calculated storage volume; Note: 5m thick (100%) and less if used total area
- 191 Mt of theoretical capacity in Showgrounds Sandstone storage area (additional 172 Mt in Tinown and Rewan)

CGSS method vs Storage Efficiency

BASIN	Km ²	CGSS Capacity (Mt CO₂)	SE Capacity Approach (4% of pore volume) (Mt CO ₂)	CGSS capacity as % of pore volume
Galilee	147,000	3,430		
Bowen	180,000	339		
Surat	327,000	2,300		

Note: The thicker the reservoir, the larger the discrepancy

Conclusions

- Queensland CO₂ Geological Storage Atlas assessed
 36 basins at regional level
 - High graded basins
- Used the prospectivity in determining capacity
 - Seal and reservoir distribution, heterogeneity and quality
 - Trapping options and viability
 - CO₂ density at each location not generic value
 - <u>Estimated</u> "Invaded volume of reservoir" for RGS
- Did not use SE methodology ("couldn't ?")
 - Relied on practical geological knowledge (looked at rocks)
 - prospectivity) & conservative / sensible estimates

Must map "fairways" for sensible capacity estimates

Must Map Fairways

Stratigraphic ——
Pinchout "barrier to flow pressure build up
- avoid"

Bounding Faults — "reactivate or lose CO2 - avoid"

Top of Structure – "final location"

High Permeability
Streaks — "lose
CO2 - avoid"

Migration Pathway "invaded volume"

Total Pore
Volume "drainage
cell" – maximum
storage volume
Injection Location