

Effects of Natural or Hydraulic Fractures on CO₂ Sequestration in Saline Formations

Bin Gong (gongbin@pku.edu.cn) Peking University

Outline

- Background
- Methodology
- Case study
- Conclusions

Challenges in CO₂ Sequestration

- Site selection: storage potential assessment with considering possible leakages
- Monitoring: scheme design to be capable of observing CO₂ transport and precaution of leakage through fractures/wells
- This work: to simulate CO₂ propagation in saline aquifer and leakage through fractures/wells

Models for Fracture Description

- Single porosity model
 - Accuracy
 - Large number of grids
- Dual porosity model
 - Large-scale but sparse fractures
 - Transfer function
 - Scale-dependent heterogeneity

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

Discrete Fracture Modeling

- Fractures are discretized as explicit entities
- Fractures are represented individually
- Connection-list based simulation: fracture-fracture, matrix-fracture, matrix-matrix connections

5

(Karimi-Fard, SPE 88812)

China Australia Geological Storage of CO2

Applied DFM Workflow

Simulation Setup

- Reservoir size: 17,209.3 ft imes 2,589.99 ft
- Matrix porosity: 0.48% 8.4%
- Matrix permeability: 0.0019mD 11.7mD
- Fracture porosity: 100%
- Fracture permeability: 1,000,000mD
- Fracture aperture: 3.28×10^{-3} ft
- Two wells: one injector completed in target formation, one monitoring well completed below, in middle of, and above caprock

China Australia Geological Storage of CO2

Case Description

Ca

Case 1	With no natural fractures
Case 2	With natural fractures
Case 3	Fractures close to injection location
Case 4	Fractures far from injection location
Case 5	Fracturing well: half length = 150 ft
Case 6	Fracturing well: half length = 450 ft

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Case 1: with no natural fractures

CO₂ saturation profiles

ca

Case 2-4: with natural fractures

Fractures close to injection location

The distance between the fractures and the injection point are moderate

Fractures far from injection location

11

China Australia Geological Storage of CO2

CO₂ saturation profiles

Fractures close to injection location

Ca

The distance between the fractures and the injection point are moderate

Fractures far from injection location

12

China Australia Geological Storage of CO2

CO₂ storage rate and cumulatives

CO₂ leakage rate

Ca

CO₂ concentration at observation well

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

Case 5-6: with hydraulic fractures

Hydraulic Fracture length: 100m

Ca

Hydraulic Fracture length: 300m

CO₂ saturation profiles

66

17

China Australia Geological Storage of CO₂ 中澳二氧化碳地质封存

CO₂ storage rate and cum.

CO₂ injection rate for cases 2, 5, 6

Cumulative CO₂ injection for cases 2, 5, 6

CO₂ leakage rate

Ca

CO₂ concentration at observation well

China Australia Geological Storage of CO2

中澳二氧化碳地质封存

60

Conclusions

- The existence of caprock and mudstone layers could prevent injected CO₂ from leaking outside the saline aquifer when no fractures are present.
- Fractures intersecting with mudstone layers will cause significant leakage increase as the fractures form extremely preferential pathways for CO₂ transport.
- Fracturing will help CO₂ moving horizontally. The longer the hydraulic fracture, the more CO₂ will be retained in the target formation.
- Hydraulic fractures, if not communicate with natural fractures, will not only help improve injectivity but also mitigate the leakage risk; But if they are close enough to natural fractures up out of the target formation, it may cause severe CO₂ leakage.
- If the location of the injector is far enough from fractures in the caprock, the leakage risk is very limited and injectivity is significantly improved.

Acknowledgements

- SUPRI-B research group of Stanford University
- Global Climate and Energy Project (GCEP)

Thank you!

