

Overview of CCUS Technology Development in China: Current Status and Future Goals

The Administrative Centre for China's Agenda 21 Ministry of Science & Technology of China

> April 17-18th, 2012 Beijing China

Outline

• Why CCUS/CCS?

• Part I: CCUS Technical Policies and Activities in China

• Part II: Summary of CCUS technology Roadmap Study in China

Why CCUS/CCS attracts attentions?

- Climate Change and its adverse impacts have been threatening the living of human kind.
- Fossil fuel will continue play very important role in the foreseeable future. (IEA, share drop to 75% in 2035 from current 81%, but overall demand raise 40%)
- CCUS is an emerging technology with potential for large-scale emission reduction, so it's considered one of the most important technologies to control green house gas emissions.

Develop and Reserve CCUS is important for China

in the context of Addressing Climate Change

• CCUS may contributes to middle-long term emission reduction:

safeguard energy security.

Overview of CCUS Policy and Activities in China

CCUS S&T policies in China (I)

- ➤ National Medium- and Long-Term Program for Science and Technology Development (2006-2020), State Council, 2006 "To develop efficient, clean and near-zero emission fossil energy utilization technologies"---highlighted as an important frontier technology
- ➤ China's National Climate Change Programme (2007-2010), State Council, 2007
 - CCUS technology was included as one of the key GHG mitigation technologies that shall be developed.
- China's Scientific and Technological Actions on Climate Change (2007-2020), 14 Ministries including MOST, 2007
 - CCUS technology was identified as one of the key tasks in the development of GHG control technologies in China.

CCUS S&T policies in China (II)

- ➤ National 12th Five-year Plan on S&T Development, July, 2011
 - ➤ Technology to mitigate Climate Change
 - Clean Coal Technology for Power generation
- ➤ National 12th Five year workplan on GHG emission Control, Dec. 2011
 - ➤ Capture pilot in power, coal chemical, cement, steel sectors
 - ➤ Establish integrated CO₂ CCS-EOR domonstration

Total funding support for CCUS

- ➤ Chinese government has scaled up its funding in the R&D and demonstration of CCUS technology.
- During the 11th Five-Year Plan period, more than 20 CCUS-related R&D projects, over RMB 200 million from government budget, attracted an additional RMB 1 billion Yuan from the corporate and other private sectors.
- ➤ In the current 12th Five-Year Plan period, the Chinese government has already dedicated more than RMB 400 million, generating an additional RMB 2.3 billion Yuan from the private sector

CCUS S&T activities and pilot Projects in China

- Main Government Supported S&T activities
 - Themes and areas Supported by National High-tech R&D Program (863)
 - Post-combustion + CCS research and demonstration
 - IGCC+CCS research and demonstration
 - CO2-Microalgea-bio diesel conversion key technology research
 - CO2 mineralization research
 - Themes and areas Supported by National Key Technology R&D Programme
 - Industrial CCS (iron and steel sector)
 - Oxy-fuel + CCS research and demonstration
 - Full-chain dome (Coal chemical capture + Saline water storage) demonstration
 - Themes and areas Supported by National Basic Research Programme (973)
 - Theoretical research and pilot study on enhanced oil recovery (EOR)

CCUS S&T activities and pilot Projects in China

CHINA HUANENG GROUP'S 3,000 T/A PILOT

Huaneng Beijing Gaobeidian Thermal Power Plant, start operation in 2008, CO2 used in food industry

China Power Investment Co. 10,000t/a capture pilot

Location: Hechuan Power station, Chongqing

Technology: Post-combustion capture

CO₂ Capture Rate: >95%

CO₂ Purity: >99.5%

10,000 t/a carbon capture device

Start operation since January, 2010

Huaneng 120kt/a CO₂ capture demonstration in Shanghai Shidongkou Power Plant

Project Entity: Huaneng Shanghai Shidongkou No.2 Power Plant

Location: Baoshan district, Shanghai

Technology: Post-combustion capture + reuse in the beverage industry

CO₂ purity: >99.5%

Start operation since early 2010

Huazhong University of S&T (HUST) 35MWt Oxy-fuel pilot, Hubei

Existing 400kWt Oxy-fuel recycle combustion facility

Features of the 35MWt oxy-fuel pilot

Project Entity: HUST and others

Goal: To set up a full demonstration plant combining carbon capture, storage and utilization

Scale: 35 MWt oxy-fuel combustion boiler with 100,000 t/a CO₂ storage

Location: Yingcheng, Hubei Province

Technology: Oxy-fuel combustion + storage in salt mines

Status: under preparation

 CO_2 capture rate: > 90%

Shenhua 100,000 t/a CCS demonstration, Inner Mongolia

Features:

Technologies: CO₂ chemical source capture + saline aquifer storage

Injection scale: 10,000-100,000 tons per year

Expected Depth: 1000-2500 m

Number of wells: 1 injection well, 2 monitoring well **CO₂ Source:** Captured from coal liquefaction plant

PetroChina's CO₂ EOR Research and pilot Injection, Jilin Oilfield

PetroChina EOR Project

Jilin Oil Field CCS-EOR pilot test block well network design

Goal: 0.8-1.0 million tons storage of CO₂ annually (Phase II)

Site: Jilin Oil Field

Technologies: Separation of CO₂ from natural gas + EOR

Status: Phase I has been completed and phase II is in progress

China United Coalbed Methane Co. ECBM Pilot Project

CUCBM CO2-ECBM Well Site

CUCBM CO2-ECBM Well Site

Project Entity: China United Coalbed Methane Company (CUCBM)

Goal: Studying and developing ECBM and CO₂ storage technology, testing safety and permanence of CO₂ sequestration.

Location: Shizhuang, Qinshui County, Shanxi Province

Technique: CO₂ Storage for ECBM

Current Status: Ongoing, injection test started since April 2010

ENN Group's Micro algae Bio-fuel Pilot

Sinopec's 30,000 t/a CCS-EOR Pilot and plan for 0.5-1 M t/a in the coming years

International S&T Collaboration on CCS

- ➤ Bilateral scientific exchanges and cooperation conducted with European Union, Australia, Italy, Japan, the United States, etc.
 - **➤** China-Australia CO₂ Geological Storage Project (CAGS)
 - China-EU NZEC Cooperation
 - **➤** Sino-Italy CCS Technology Cooperation Project (SICCS)
 - > Etc.
- > Exchange and cooperation under CSLF, MEF and other international framework
- > Promote the development of CCUS technology in some extend:
 - > Info of Newest technology advancement and trends
 - > Building capacity
 - > Support preliminary researches, incl. techno-economic evaluation, preliminary assessment of storage potentials, etc.

Roadmap: CCUS Technology Development in China

Why put forward CCUS technology roadmap in China?

- CCUS development in China starts relatively late.
- Unbalanced development in technology chain.
- CCUS technology is complex, and need coordination and planning.
- R&D and pilot project cost a lot.

Roadmap Research Method

- Questionnaire: Send out 121 questionnaires, ranges from colleges to corporations
- Experts brainstorming
- Leading Sub-expert group: Set capture, transportation, utilization, storage technology expert teams and each team leader takes responsibility for their work
- Set a core expert panel and coordinate the sub-expert groups

The underlying conditions to develop CCUS in China

Conditions

- Large # of concentrated
 CO₂ emission sources
- considerable theoretical CO₂ storage potential
- multiple promising CO₂
 utilization options

Challenges

- High cost
- High Energy penalty
- complex geological conditions
- Sink and source doesn't match
- dense population

China CCUS vision and target

Establish 1 M t/a full-chain demo Technical Capacity for applications Technically
Feasible and
economically
affordable
Option to
address
Climate
Change

Launch fullchain demo

System scale: >0.3million tons/a Energy penalty: <25% Cost: 350 RMB/ton

Capture system: 0.3-1 million tons/a Energy penalty: <20% Cost: 210 RMB/ton

Pipeline: >80km Cost: 90 RMB/ton

Capacity:0.3million tons/a

Utilization scale: 1 million

tons/a

Oil-production: 0.3million

tons/a

Storage percentage: 40-50%

Storage: 0.3million tons/a

Cost: 50 RMB/ton

System scale: 1 million tons/a

Energy penalty: <20% Cost: 300 RMB/ton

Capture system:
1 million tons/a
Energy penalty:< 15%
Cost :180 RMB/ton

Pipeline:200km

Cost:80RMB/ton*million km Capacity:>1million tons/a

Utilization scale:2 million

tons/a

Oil-production:0.6million

tons/a

Storage percentage: 50-60%

Storage: 1million tons/a

Cost: 40 RMB/ton

System scale:

>1 million tons/a Energy penalty: <17% Cost: 240 RMB/ton

Capture system: >1 million tons/a Energy penalty:< 12% Cost: 140 RMB/ton

Pipeline net:>= 1000km Cost: 70 RMB/ton

Utilization scale:>2 million

tons/a

Oil-production:1million

tons/a

Storage percentage: 60%

Storage: >1million tons/a

Cost: 30 RMB/ton

Priority Actions for Storage

Basic research: enhance basic research on geological storage mechanism.

R&D: launch nationwide storage capacity assessment; to develop assessment techniques and standard on site selection and safety, and monitoring and remediation techniques.

Pilot project: establish the storage security system with a focus on site selection, project implementation guidelines and safety environment assessment standard.

Target

2015

Scale: 0.3 M tons/a Cost: 50 RMB/t

2020

Scale: 1M tons/a Cost: 40 RMB/t

2030

Scale: >1 M tons/a Cost: 30 RMB/t

Source Matching 1

On-land and off-shore Saline Aquifer Storage Opportunities

Source Matching 2

EOR and Depleted Oil reservoir Storage Opportunities21世紀文程管理中心

Conclusion on Source Matching Analysis

- Erdos Basin, Sichuan Basin, Songliao Basin etc. are potentially good site for geological storage.
- East China has a better chance in demonstrating full chain CCUS projects for now. But in the future, it may be a better option to demonstrate CCUS projects in west China.

Suggestions on CCUS R&D in China

- Nationwide utilization and storage capacity assessment
- Early Opportunities (high-concentration emission sources) and demo large application potentials (power sector) be prioritized
- No winner solution for CO2 capture technology at current stage
- the full-chain technology demonstration for CO2-EOR and land saline aquifer storage shall be prioritized
- Scale of integrated demo steadily take forward with an aim to operate demonstration project at 1 million tons/a and above by 2030
- R&D on innovative and cost-effective CO2 utilization technologies shall be enhanced, and initial demonstration can be launched jointly with other integrated systems.

Suggestions on Full Chain Demo

Support Policy and Suggestion

- Strength R&D and demo
 - Funding; coordination; regulatory framework; financing; platform; public acceptance
- Promote policy research for future
 - Policy and Regulatory system; collaborate among sectors; financing mechanism; infrastructure; IPR
- Strength international corporations on science and technology
 - CBDR
 - Technical and financial support from developed countries

Q & A

Contact Info:

ZHONG Ping zhongp@acca21.org.cn +86-10-58884891

The Administrative Centre for China's Agenda 21 Ministry of Science & Technology of China

Links for downloading CCUS Technology Progress in China report: http://www.acca21.org.cn/gest/etc/CCUS_en.pdf

