

Carbon Capture and Geological Storage

Key Messages

- Evidence from petroleum studies show that oil, gas and CO₂ can be stored in the deep subsurface for geological time
- CO₂ can be stored in depleted oil and gas fields and deep saline formations
- CO₂ injected as a fluid into reservoirs (sandstones) is trapped by seals (mudstones)
- The technology for the geological storage of CO₂ is mature

The Greenhouse Gas Problem

More Recent Times

16% increase (60 ppm) of CO₂ concentrations in last 44 years

Concentration of CO₂ in atmosphere from Mauna Loa Observatory : 1959 - 2003

Currently 1.5 – 2.5ppm increase per year

[adapted from Carbon Mitigation Initiative, Princeton University]

What is Carbon Capture and Storage?

- Capture from stationary source e.g Power plant
- Transport to a storage site (pipeline)
- Injection via a well bore into a deep geological formation as a supercritical fluid
- Monitoring the migration of the fluid under buoyancy away from the injection point
- Eventual permanent trapping structural, dissolution, residual and geochemical

Capture Processes

Emission Sources and Transport

Options for Geological Storage

GEOSCIENCE AUSTRALIA

Why Supercritical CO₂?

- At Pressures higher than 7.39 MPa and Temperatures higher than 31.1°C, CO₂ becomes a supercritcal fluid: gas like but with 400X the density.
- Generally these conditions are found below about <u>800m</u> in the subsurface

Source CO2CRC

Sedimentary Basins and Geological Storage

- Saline aquifers suitable for storage occur almost exclusively in sedimentary basins
- These are depressions in the crust of the earth in which sediments have accumulated over millions of years and which have not experienced significant uplift and folding
- They may be tens of kilometres thick and occur both on the continents and under 'shallow seas
- All oil and gas accumulations occur in sedimentary basins.

Basins Are Not Equal

- Sedimentary basins are the regions that offer the opportunity for geological storage of CO_{2.}
- But all sedimentary basins do not have the same potential for storage
- We need to consider the tectonic settings and reservoir characteristics of each basin

Reservoirs and Seals

- Reservoir rocks have spaces (pores) between the grains which can hold fluids and connections between the pores which can allow the fluids to flow through them (permeability). Sandstones and limestones.
- Sealing rocks are very fine grained with not practical permeability. Mudstones or shales.

Reservoir v Seal

Reservoirs and Seals

Where a sealing rock overlies a porous reservoir rock the seal is able to prevent buoyant fluids such as oil gas or carbon dioxide from rising out of the reservoir.

How Can You Store Anything in Rock?

The geological characteristics of the subsurface can be seen exposed in coastal outcrops

Adapted from CO2CRC

GEOSCIENCE AUSTRALIA

How Can You Store Anything in Rock?

GEOSCIENCE AUSTRALIA

What is a Reservoir Rock?

Porous – spaces between grains Permeable – allows fluid flow Contains water, sometimes oil or gas e.g. sandstone <u>NOT</u> a large void

What is a Sealing Rock?

Impermeable – prevents fluid flow e.g. mudstone

50 um

1951 80

GEOSCIENCE AUSTRALIA

Seismic Identification

Storage Mechanisms: Structural Traps

Conceptual CO₂ Storage Scenarios

SOURS CENSERUSTRALIA

Storage Mechanisms Saline Reservoir Trapping

(Sie Source Australia) 2012

Saline Reservoir Trapping

 CO_2 Trapped in solution $residual CO_2$ Reck water Flow of CO₂ $residual CO_2$ Reck value CO_2 Trapped in rock pores as Residual Saturation (Sgr_{CO2})

All these processes are time dependant. That is the proportion of the carbon dioxide trapped and thus the security of trapping increases over time and the length of the migration path

Saline Reservoir Trapping

Storage in saline reservoirs will also take place in **subseismic** structural and stratigraphic closures both at the base of the seal and with the body of the reservoir.

Trapping may occur under thin intrabed shales like these which are below seismic resolution before they trap the CO_2

The Utsira Sandstone at Sleipner

Interbeds revealed by CO₂ injection

Saline Reservoir Trapping – Alternative Terms

Migration Assisted Storage- (CGSS 2009)

Migration Associated Trapping- (CO2CRC 2010)

GEOSCIENCE AUSTRALIA

Trapping Security Over Time

How Long Will It Stay There?

- Naturally occurring fluids have been trapped underground for many millions of years
- Oil, natural gas and CO₂
- This can be shown by the study of petroleum systems.

Time Of Petroleum Charge Into Traps

Is This New Or Unproven Technology?

The critical components of the CCS process are currently in use within the Oil & Gas Industry.

Capture: Natural gas processing, ammonia plants other industrial processes.

Transport: 5650 km of CO2 pipeline in the USA.

Injection: EOR – 70 projects in West Texas. Acid gas disposal

Storage: Subsurface storage of natural gas for 100yrs. Deliberate storage of CO₂since mid 1990s

CO₂ storage in the North Sea since 1996

Source IPCC

GEOSCIENCE AUSTRALIA Geoscience Australia) 2012

GEOSCIENCE AUSTRALIA

Conclusion

CCS is not the silver bullet to fix all our problems. It is part of a solution, together with developing renewable and efficient energy options.

- Petroleum studies show that oil, gas and CO₂ can be stored in the deep subsurface for geological time (millions of years).
- CO₂ is injected as a fluid into tiny spaces between grains in reservoirs (sandstones) and is trapped by seals (mudstones).

The technology for the geological storage of CO_2 is mature and geological storage of CO_2 is already happening.

With the general reader in mind, *Clean Energy, Climate and Carbon* outlines the global challenge of decreasing greenhouse gas emissions. It covers the changing concentration of atmospheric carbon dioxide through time and its causes, before looking at the range of clean energy technologies and considering in detail, what for many people is the unfamiliar clean energy technology of carbon capture and storage (CCS).

The book also explores the political environment in which the discussion on clean energy technology options is occurring.

TO ORDER VISIT www.crcpress.com/9780415621069

Clean Energy, Climate and Carbon Peter J. Cook 2012 246 x 174 mm: 220pp. Hardback: ISBN 978-0-415-62106-9 £25.99 US\$ 39.95

GEOSCIENCE AUSTRALIA

Questions?

Phone: +61 2 6249 9111

Web: www.ga.gov.au

Email: feedback@ga.gov.au

Address: Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston ACT 2609 Postal Address: GPO Box 378, Canberra ACT 2601