Enhanced Coalbed Methane (ECBM) Technology Introduction

Zhiming Fang

Institute of Rock and Soil Mechanics Chinese Academy of Sciences

What is Coal?

- □ A readily combustible rock containing more than 50% by weight and more than 70% by volume of carbonaceous material formed from compaction and induration of variously altered plant remains similar to those in peaty deposits – Schopf (1956)
- □ A carbonaceous substance composed of phytogenetic materials *Spackman* (195
- A black rock that burns

What is Coalbed Methane (CBM)?

- Gas generated during coalification
- □ Gas is 85 99% methane (CH₄)
- Gas is held on coal matrix by adsorption

Structure of Coal: Dual Porosity System

Primary porosity

Coal matrix

■ Secondary porosity

Coal cleats

Natural fractured coal

Dual porosity model

Gas Storage Mechanisms

□ Gas can exist in a coal seam in two ways:

Free gas within coal cleats and natural fractures

Adsorbed layer on the surface of micropores

■ Because the bulk porosity of the coal cleat system (i.e. secondary porosity) is small (<5%) and initial gas saturation in the coal cleats is typically low (<10%), most of the gas-in-place in coals (>90%) is adsorbed in the coal matrix

Gas Storage Mechanisms

Langmuir Isotherm

$$Gs = \frac{abp}{1+bp}$$

where:

Gs = gas storage capacity, ml/g

a = Langmuir storage capacity, ml/g

b = Langmuir constant, MPa⁻¹

p = pressure, MPa

Typical Langmuir isotherm adsorption curve

Gas Transport Mechanisms

Desorption from Internal Microporosity Surfaces

Diffusion Through the Matrix and Micro- and Mespores

Fluid Flow In the Natural Fracture Network (not to scale)

- Controlled by partial ☐ Controlled by pressure
- **Follow Langmuir** equation
- concentration gradient
- Follow Fick's Law

- **Controlled by** pressure gradient
- Follow Darcy's Law

CBM Primary Production Mechanisms

- □ Reduce cleat pressure by producing water
- **■** Methane desorbs from matrix and diffuses to cleats
- Methane and water flow to wellbore

Bottleneck of CBM Primary Production

- Low coal permeability (In China, the initial permeability of 72% of coals < 1mD)</p>
- Low gas flow rate
- Low gas recovery ratio

Concept

To inject gas into deep unminable coalbed for enhanced recovery of coalbed methane (ECBM) recovery

- Primary porosity
 - e. i., CO₂
- Inert gas
 - e. i., N₂

Mechanisms

CO₂-ECBM Recovery Mechanisms

- Injected carbon dioxide in cleats
- Increases total cleat pressure
- Carbon dioxide diffuses into matrix and strongly adsorbs onto coal
- Reduces partial pressure of methane in cleats
- Methane desorbs from matrix and diffuses to cleats
- Methane and water flow to wellbore

N₂-ECBM Recovery Mechanisms

- Injected nitrogen into cleats
- Increases total cleat pressure
- Nitrogen diffuses into matrix and weakly adsorbs onto coal
- Reduces partial pressure of methane in cleats
- Methane desorbs from matrix and diffuses to cleats
- Methane, nitrogen and water flow to wellbore

Why CO₂-ECBM attract more attention?

- CO₂ is stored Greenhouse gas reduction
- and at the same time the recovery of
 coalbed methane is enhanced -

CO₂-ECBM Pilot Test in The world

Schematic of CO₂-ECBM

Distribution of pilot test in the world

USA

Japan

UN

Canada+China

Challenges of CO₂-ECBM in China

However, pure CO₂ as a displace gas has following problems:

- 1. Making the coal swell and therefore reducing its permeability; In China, the initial permeability of 72% of coals < 1mD.
- 2. It is difficult to identify "unminable" coal at present; The ECBM projects may conflict with mining.

Gas mixture ECBM

Mechanisms

The concept of G-ECBM technology is to inject gas mixture, consisting mainly of N_2 and CO_2 , into the coalbed through the injection wells to displace the methane from the coal and drive it to the production wells.

G-ECBM: Features

- Balancing the preferential sorption role of CO_2 and permeability-enhancing role of N_2 .
- Suitable for low-permeability and minable coals, help to control gas outburst and enhance methane recovery, therefore, attract the interest of enterprises.
- Lowering, even eliminating the cost of gas purification.

Batte Key Laboratory of Ocomechanics and Pill of Test in Pingdingshan Coal Mine

Overview of the Test

- ◆ Fat coal
- 620m deep tunnel
- Initial permeability is 4 μD
- ♦ 3 test wells + 220 existing production wells

Results of pilot test

Pilot test summary

The number of ring hole	Average flow rate of CH ₄ (m ³ /hr)	Average concentration of CH ₄ (%)
1# hole	0.86	23.5
2# hole	0.422	43.4
3# hole	0.63	8.6
Boring holes nearby (220 by traditional method)	0.13	6
Comparation ECBM with traditional method	5.7	2.7

Comparing with 220 conventional production wells, the average single-well flow rate and the average concentration of the CH₄ of the test wells increased by 4.7 times and 1.7 times, respectively

Thank you for your attentions!

