

Update on CCS Research at the GCCC

Susan Hovorka Gulf Coast Carbon Center Bureau of Economic Geology Jackson School of Geosciences

CAGS3 CCS workshop in Urumqi, Xinjiang, China

Jackson School of Geosciences

Gulf Coast Carbon Center

- Established 2002
- Industrial Associates program
 At University of Texas at Austin
 Bureau of Economic Geology
- Multi-year "Big Plan"
- Strong leverage via sponsored research
- Field projects

Gulf Coast Carbon Center Current Research

GCCC Major Themes	Major Funded Projects	Sponsor funded
	DOE SECARB – Phase III	projects
Capacity Estimation		
	DOE-Offshore Miocene	Links to CCS JIP
Unconventional EOR	Net Carbon Negative Oil	CCS JIP
	not cancer nogante en	Links to
Monitoring Methods	DOE CCPI: NRG – West Ranch	Capture
Optimization	DOE EASI-Tool	
		Links to
Analog Studies	DOE Intelligent Design	BES CFSES
	DOL mongent Doorgn	CFSLS
Knowledge Sharing	GCCC Industrial Associates	Links US
		and global

Capacity Estimation

- What limits storage capacity?
 - Pressure limits
 - EASi-Tool <u>http://www.beg.utexas.edu/gccc/EASiTool/index.php</u>
 - Consider capacity under open and closed boundary conditions
 - Lateral migration
 - Rates and process of migration far from injection point

Easi-tool Capacity calculation

Comparison between Permedia and physical models

Luca Trevisan

Observations from previous sandbox experiments performed under capillary-, buoyancy-dominated flow, *Trevisan et al.* (2017) WRR

AT AUSTIN —

Stochastic modelling approach is able to account for uncertainty of individual numerical simulations

Simulation result for 1 realization

Probability map for an ensemble of 50 realizations

Simulation results for 50 realizations of P_{th} field

Coast

Carbon

Center

Optimization of Monitoring

- Field tests for real world solutions and validations
- Development of optimized "process based' soil gas methods
- Real time instruments for surveillance of groundwater
- Above Zone "AZMI" installations.

- 1) Define metrics of project success
 - Mass injected
 - Avoid unacceptable project outcomes
 - Loss of CO2 from secure storage
 - Unacceptable Seismicity
 - Damage to resource
- "Material Impact"
 - Defined quantitatively and with a level of certainty
 - "low probability" therefor need to prepare for nondetect.
 - Noise of setting and sensitivity of monitoring array

Real-time sensors for environmental surveillance

- Current geochemical monitoring requires water samples be collected periodically and analysed either on-site or in a chemical laboratory
- Labour and cost intensive

Can we use sensors for real-time in situ monitoring of geochemical parameters in groundwater?

To make geochemical monitoring as simple as pressure monitoring

Changbing Yang, GCCC

Field Demonstration at the Brackenridge Field Laboratory

Configuration of the testing well

Not to scale

Step-wise CO₂ release tests

- On-site measurements of pH and alkalinity
- On-site measurements of dissolved CO₂ with a CarbonQC

Alex Sun and Hoonyoung Jeong

TEXAS Geosciences Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

Considering Geological Uncertainty in monitoring

Life Cycle for CO₂ Enhanced Oil Recovery

• Is CO₂-EOR a valid option for greenhouse gas emission reduction? Are geologically stored carbon volumes larger that direct/indirect emissions resulting from CO₂-EOR operations?

Vanessa Nunez and Ramon Gil

System boundaries of previous studies

Vanessa Nunez and Ramon Gil

